Embedding the design cycle through science inquiry with Primary Connections Technology as design parallels science as inquiry. Teaching and learning science using the 5E model and the design cycle is an effective STEM practice. The following table shows how the Australian Curriculum: Technologies- Processes and Production Skills, intellectually and pedagogically connected with the phases of the 5E model for science inquiry. Use this matrix to inform planning, or to audit existing science inquiries for the purpose of increasing links to design technologies. ## **TECHNOLOGY AS DESIGN** | | INVESTIGATING
AND DEFINING | GENERATING
AND DESIGNING | PRODUCING AND IMPLEMENTING | EVALUATING | |-----------|--|---|---|---| | ENGAGE | Be presented with a design task. | Have a range of products to investigate/compare. | Create what they think a product might look like. | Evaluate a 'bad'
product. | | EXPLORE | Explore contexts
and uses for
design. | Design investigations and experiences to gain knowledge. | Create prototypes to test ideas. | Conduct product tests. | | EXPLAIN 1 | Suggest new success criteria based on what they know. | Explain what they have learned and how that effects product design. | Create prototypes
to show what they
know. | Critique
prototypes based
on what they
know. | | EXPLAIN 2 | Look at expert success criteria. | Research design principles of experts. | Follow an expert procedural task. | Evaluate expert products. | | ELABORATE | Consider new contexts and success criteria. | Design investigations to gain understanding of new contexts. | Produce
prototypes
applying what
they have learned
in a new context. | Suggest
improvements on
previous designs
based on a new
context | | EVALUATE | Create a design task and criteria based on a scenario, suggest what would need to be investigated to meet the brief. | Explain what they have learned, how that applies to the design task and what they still need to know. | Produce a final design to show what they know and suggest how they would modify for production. | Evaluate prototypes using success criteria and suggest improvements. |